- 135 -

ON-LINE PROGRAMMING

R. Yaari, T. Gilead, B. Reuter, E.E. Ronat and R. Yaffe,

Weizmann Institute, Rehovot, Israel

I. Introduction:

Our control program ZOO was written for a PDP-9 computer. The coding
was done by using most of DEC's utilities, .like the Text Editor for creating
the source files of subroutines, the Assembler MacroA-9 (a restricted version
of Macro-9) the debugging aid D.D.T., the relocatable linking loader of the
keyboard Monitor System (KBM-9), and the UPDATE for building a library of
subroutines in binary mode.

The fact that all subroutines were stored on DEC tapes, enables us to
modify easily any section of the program, without affecting the performance

of the entire control program.

The program occupies: 4K words of instruction
2K " for buffers
1K " common area, working space
1K " KBM resident (reserved for future

developments)-

It should be emphasized that the KBM was used only in the preexecution
phases of the program. Once execution started the on-line program was complete-
ly stand-alone. Thus we wrote our own special purpose and compact handlers for
DEC tape, Magnetic tape and teletype. Furthermore, during the execution phase
the resident monitor area (1K) could be overlaid by storage space, (e.g.
buffers), and thus no serious loss of storage resulted from use of the
monitor system.

In designing our program we have tried to learn from all examples, to
make it as simple as possible from all points of view, namely:

(a) No sophistication in the management, no Executives which control queue
of tasks, software priorities etc. We have just used a simple sequent-
ial set of operations, out of which simultaneous jobs are handled via

API handlers.



= 136 -

(b) Simple, straightforward I/0 organization, 3 record types for the 3
different data structure. No circular buffering, we use double buffers

instead.

(c) Since we have not used external assembler, all subroutines are kept in
a file organization on DEC tape, and the program is loaded from a dump

area of a DEC tape.

All these could, to some extent, slow the operation, but we feel confident

that is only a small fraction of the ''real things" (like fiducials and CPTS).

II. Program Structure:

The program consists of 6 major blocks:

(1) MAIN - Initializes S.R. activities, sets API trap addresses, readies
1/0 devices, checks various reference marks, calibrates fiducials,

gets date, time, operator information, roll, tape, etc.

(2) LION - Controls all measurements. Calls upon XYLAM to perform 3
views measurements. ID information is read from DEC, film is moved

to picture and stage is brought approximately to lst fiducial.

(2) XYLAM - Measures one vertex at a time in the following sequence:
(a) 4 fiducials are measured by a push button, after stage was

driven automatically to the expected position.

(b) Stage moves to vertex, vertex scan starts after manual
adjustment, future vertex calculation is done, while the
Q channel fills one buffer, the other is being written on
tape, in addition the data is being displayed on the scope

at the same time and various checks are being made.

(c) Crutch points measurements on all tracks, part of which are
driven as flagged cpts, namely stage is driven to the expect-

ed position.

(4) Device handlers.- Closed subroutines to handle the various devices

of the S.R., including their API service sections.

(5) PILIM - A collection of special functions, which could be entered

by hitting (ALT) key and typing a letter. These functions can



- 137 -

perform remeasurements, handle rejects, sign-in, sign-off, device
checkout, fiducial calibration, data display, magnetic tape

operation, etc.

In other words it can "Interrupt" the regular flow of program and

perform some. function and resume its flow afterwards.

(6) Utilities - Arithmetic functions, formating routines, etc.

I/0 Structure:

(a) Input from DEC tape, 40 words per event: ID, VERTEX, CODES, when
a new ID is to be read, it is already found in buffer, and the

program initiates another read.

(b) Output on a 7-track, IBM compatible magnetic tape. Up to few
months ago we were using 556 bpi without any trouble. We have
switched to 800 bpi in order to have only 1 magnetic tape per

roll, and we tolerate up to 3-4 parity errors per roll.
We have 3 types of records:

ID - 24 words, scan information
Q-524 " 512 data (128 hits) + 12 Header

FVC - 56 " Fiducials, Vertex, Crutch points

Each record has a type signature, which identifies it, together
with its length. The records are written as independent physical
records, and this makes it easy to read it, without any need for
deblocking, unpacking, etc. On the other side, it occupies more
space on tapes, and after 2 years of operation the number of
tapes is quite large. This is solved by an extra operation in
the long chain of analysis, namely 5-6 tapes are being stored on

one 1600 bpi, 9 track tape, after all the data was checked.

IV. Timing of Operations:

The following table shows how much time is consumed at each phase of
measurement. All numbers are given for 3 views: (each view is approximately

1/3 of the time).



- 138 -

1) Film movement, view switcﬁing, event verification 14 sec.
2) 4 Fiducials measurement 14 sec.
3) Vertex drive, adjustment and scan 19 sec.
4) Crutch points taken on all tracks (4 prong) 28 sec.

75 sec.

We are confident that we can easily improve this situation by taking
minimum cpts (30% better) and by using semiautomatic fiducial measurement,

so that we could reach a time of about 45 sec/event.

V. Diagnostic Routines and External Utilities:

We have a local version of RAVEN, called OREV. It is an adaptation
of LRL's routines, though vastly altered and expanded to accommodate the
various changes in the Q-channel logic.

We have introduced some extra features which provide us with more

useful functions:

Controlling the ramping (periscipe movements), collecting data on
a magnetic tape, dumping or printing interesting parts of a buffer, and
also the possibility to magnify selected areas according to radius range.
Our library of utilities includes some packages which can perform

data transfer from the following devices:

Magnetic tape to DEC and vice versa

DISK to magnetic tape " " "



I. POOH :

- 139 -

OFF-LINE PROGRAMMING

We have started with an old version of LRL POOH (FILTER+MATCH) which

ran on a 360 IBM, and was adapted to our local GOLEM. Since then it was

modified quite extensively along 2 major lines, using an IBM 370/165

computer just recently installed.

1)

(2)

Our local data structure and the different machine parameters
have dictated natural line of modifications. More debug aids,
reject handling, more switches for skipping, selecting various
types of events. Our calibration library file resides on a
direct.accpss device and is being updated by our CALB program.
By using Fortran instruction one gets access to the proper deck
of calibration by reading a directory record which points to the
proper location on disk. (See Define File instruction in IBM's

FORTRAN IV MANUAL).

Improvements along the developments made by LRL in their NU-POOH.

We have introduced the following items:

(a) Averaging 40 points per track into 12
(b) Better tracking out and in.
(c) Data bhecking, like monotony, bad points.

(d) Better matching routines.

We intend to introduce very soon the following features:

CLEANUP routines for dropping points from PH
average calculation, when it belongs to 2

tracks simultaneously.

We have not to-date used the REDO feature because of various reasons

(these events often failed in kinematics). - But we intend to reactivate it

soon. (A 5% gain in POOH success rate is expected).

Long chopping and negative cpts handling will be introduced, once the

extra hardware is implemented.

Our program occupies 250K bytes under FORTRAN H (OPT=2) compiler,

including buffers and plotting routines. It runs with 95% cpu utilization,



- 140 -

and process 30 events/minute. Most of the code is in Fortran, with very
little assembler code (mainly for non standard I/0).

2 seconds per event is an overall average for our data, but obviously
for a 10 track/view event, it will run up to 4-5 seconds, spending most of
the time in MATCH. Let us look at the various POOH rejects chosen from a
sample of 5000 events. POOH FAILURES: NO BEAM TRK WAS FOUND .1%

PARITY ERROR (ON INPUT) .5%

TOO FEW TRACKS 1.0% °
NO MATCH 8.6%
TRACK FAILED VOLUME .15%

NO EVENT TYPE IN DICTIONARY .2%

II. TVGP-SQUAW (GEOMETRY & KINEMATICS)

We are using a version which is very close to LRL's SIOUXC. 12% of
our events fail in these sections of the system. % of them are due to
non beam events (we are using strict criteria in this particular experiment),
and 3% are events with unacceptable xz . . The rest 4% are
mainly from Geometry failure for various reasons like: Bad points scatter,
wrong curvuture, etc. For some time we had troubles with handling short
tracks, and stopping tracks. We have solved it completely by introducing
LRL's TYPE 4 tracks (kinematical variables are azimuth, slope and momenta).
Some of the unacceptable xz were solved by introducing Dalitz Pair handling.
The event type is reduced once a pair is detected.- These 2 programmes are
running independently in core.

180K is occupied by TVGP and 240K by SQUAW. We have attached to SQUAW
a SQHIST section which gives us histograms of various quantities, like qu
beam distributions, pulls, and also a summary of failures and successes. T
These 2 programmes are 99% cpu bound and their corresponding rates are

120 events/minute for TVGP and 80 events/minute for SQUAW.

To sum it up, we have for the 3 big programmes the following timings:

POOH 30 events/minute 2 sec/event
TVGP 120 " 1/2 "
SQUAW 80 " 3/4 "

———eete.

1
total 3 7



